Tuesday, May 17, 2011

Integral of rational function

The word catenary is derived from the Latin word catena, which means "chain". The English word catenary is usually attributed to Thomas Jefferson, who wrote in a letter to Thomas Paine on the construction of an arch for a bridge:
I have lately received from Italy a treatise on the equilibrium of arches, by the Abbé Mascheroni. It appears to be a very scientifical work. I have not yet had time to engage in it; but I find that the conclusions of his demonstrations are, that every part of the catenary is in perfect equilibrium.[5]
It is often said that Galileo thought the curve of a hanging chain was parabolic. In his Two New Sciences (1638), Galileo says that a hanging cord is an approximate parabola, and he correctly observes that this approximation improves as the curvature gets smaller and is almost exact when the elevation is less than 45°. That the curve followed by a chain is not a parabola was proven by Joachim Jungius (1587–1657); this result was published posthumously in 1669.